Skip to contents

inspect_na() summarizes the rate of missingness in each column of a data frame. For a grouped data frame, the rate of missingness is summarized separately for each group.

Usage

inspect_na(df)

Arguments

df

A data frame

Value

A tibble summarizing the count and percentage of columnwise missingness for a data frame.

Details

The tibble returned contains the columns:

  • col_name, a character vector containing column names of df1.

  • cnt, an integer vector containing the number of missing values by column.

  • pcnt, the percentage of records in each columns that is missing.

Examples


library(dplyr)

# dataframe summary

inspect_na(airquality)
#> # A tibble: 6 × 3
#>   col_name   cnt  pcnt
#>   <chr>    <int> <dbl>
#> 1 Ozone       37 24.2 
#> 2 Solar.R      7  4.58
#> 3 Wind         0  0   
#> 4 Temp         0  0   
#> 5 Month        0  0   
#> 6 Day          0  0   

# grouped dataframe summary

airquality %>%
group_by(Month) %>%
 inspect_na()
#> # A tibble: 25 × 4
#> # Groups:   Month [5]
#>    Month col_name   cnt  pcnt
#>    <int> <chr>    <int> <dbl>
#>  1     5 Ozone        5  16.1
#>  2     5 Solar.R      4  12.9
#>  3     5 Wind         0   0  
#>  4     5 Temp         0   0  
#>  5     5 Day          0   0  
#>  6     6 Ozone       21  70  
#>  7     6 Solar.R      0   0  
#>  8     6 Wind         0   0  
#>  9     6 Temp         0   0  
#> 10     6 Day          0   0  
#> # ℹ 15 more rows